
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020 263

Optimal VNF Placement via Deep Reinforcement
Learning in SDN/NFV-Enabled Networks

Jianing Pei , Student Member, IEEE, Peilin Hong , Member, IEEE, Miao Pan , Senior Member, IEEE,

Jiangqing Liu , Member, IEEE, and Jingsong Zhou, Student Member, IEEE

Abstract— The emerging paradigm - Software-Defined Net-
working (SDN) and Network Function Virtualization (NFV) -
makes it feasible and scalable to run Virtual Network Func-
tions (VNFs) in commercial-off-the-shelf devices, which provides
a variety of network services with reduced cost. Benefitting
from centralized network management, lots of information about
network devices, traffic and resources can be collected in
SDN/NFV-enabled networks. Using powerful machine learning
tools, algorithms can be designed in a customized way according
to the collected information to efficiently optimize network
performance. In this paper, we study the VNF placement problem
in SDN/NFV-enabled networks, which is naturally formulated
as a Binary Integer Programming (BIP) problem. Using deep
reinforcement learning, we propose a Double Deep Q Network-
based VNF Placement Algorithm (DDQN-VNFPA). Specifically,
DDQN determines the optimal solution from a prohibitively
large solution space and DDQN-VNFPA then places/releases VNF
Instances (VNFIs) following a threshold-based policy. We evaluate
DDQN-VNFPA with trace-driven simulations on a real-world
network topology. Evaluation results show that DDQN-VNFPA
can get improved network performance in terms of the reject
number and reject ratio of Service Function Chain Requests
(SFCRs), throughput, end-to-end delay, VNFI running time
and load balancing compared with the algorithms in existing
literatures.

Index Terms— Software-defined networking, network function
virtualization, VNF placement, deep reinforcement learning.

I. INTRODUCTION

TRADITIONALLY, middleboxes are placed in the net-
work to provide services for users. As middleboxes are

generally implemented in dedicated hardwares, the placement
of middleboxes is inflexible and always incurs high Capital

Manuscript received June 23, 2019; revised October 17, 2019; accepted
November 6, 2019. Date of publication December 13, 2019; date of current
version February 19, 2020. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 61671420. The
work of M. Pan was supported in part by the U.S. National Science Foundation
under Grant CNS-1350230, Grant CNS-1646607, Grant CNS-1702850, and
Grant CNS-1801925. (Corresponding author: Peilin Hong.)

J. Pei, P. Hong, and J. Zhou are with the Department of Electronic
Engineering and Information Science, University of Science and Technol-
ogy of China, Hefei 230027, China (e-mail: jianingp@mail.ustc.edu.cn;
plhong@ustc.edu.cn; zjskd@mail.ustc.edu.cn).

M. Pan is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004 USA (e-mail: mpan2@uh.edu).

J. Liu is with the Department of Electrical and Computer Engineering, The
University of Alabama in Huntsville, Huntsville, AL 35899 USA (e-mail:
jianqing.liu@uah.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2959181

Expenses (CAPEX) and Operating Expenses (OPEX) for Inter-
net Service Providers (ISPs) during purchase, management
and maintenance [1], [2]. Fortunately, Network Function Vir-
tualization (NFV) and Software-Defined Networking (SDN)
appear as a viable way to solve these problems. Using NFV,
Virtual Network Functions (VNFs) can be realized in software
and placed in commercial-off-the-shelf devices adaptively.
Thus, middleboxes, such as Firewall (FW), Deep Package
Inspection (DPI) and Intrusion Detection System (IDS), can
be replaced by VNFs, which greatly enhances the network
flexibility and scalability and reduces CAPEX/OPEX resulting
from middleboxes [3]. As a new networking paradigm, SDN
decouples control plane and data plane, and achieves central
network management with SDN controllers [4]–[6]. Given
the advantages above, in SDN/NFV-enabled networks, it is
convenient for ISPs to monitor network devices (e.g., routers,
switches, etc.) and traffic, thus making it efficient to manage
VNF Instances (VNFIs).

Though VNFIs can be flexibly placed in the network,
there exist a few challenging problems. In SDN/NFV-enabled
networks, Service Function Chains (SFCs) have become a
popular networking service paradigm. According to the stan-
dardization of SFC by Internet Engineering Task Force (IETF),
SFC defines a set of ordered or partially ordered VNFIs and
ordering constraints that must be applied to packets, frames
and/or flows selected as a result of classification [7], [8].
Noting that the traffic of an SFC often requests to be steered
to traverse a series of specific VNFIs in a predefined order,
we define such request as SFC Request (SFCR) in this paper.
As for an SFCR, ingress → FW → DPI → IDS → egress,
its traffic needs to be steered to traverse the instances of
FW, DPI and IDS in order before reaching the egress node.
However, each type of VNF always has many instances placed
in different network locations, so it is an important problem
how to select the optimal VNFIs and construct the routing path
to steer the traffic of an SFCR. Moreover, in real network
scenarios, network traffic changes drastically over time and
places, so the placement of VNFIs should be dynamically
adjusted to adapt to the change of network load [9]–[11].
For example, when network load increases, it is necessary
to place more VNFIs to provide more available resources
for users; and when network load decreases, it is helpful to
release redundant placed VNFIs to save resources and reduce
energy consumption. Nevertheless, a series of works prove
that the VNF placement problem is NP-hard [12]–[14], which

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0003-2138-4413
https://orcid.org/0000-0001-7568-015X

264 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

is nontrivial to address. Therefore, how to determine optimal
placement of VNFIs is a critical yet challenging problem to
study in SDN/NFV-enabled networks.

Today, Deep Reinforcement Learning (DRL) has made
significant breakthroughs and impacted various domains like
control theory and strategic game playing [15], [16], which
is expected to enlighten the solution to our VNF place-
ment problem as well. Generally, traditional Reinforcement
Learning (RL) algorithms are tabular methods that evaluate
the performance of an action under a state with a Q table.
However, since the dimension of Q table is finite, traditional
RL methods are limited to handle low-dimension problems
with discrete states and actions. Compared with traditional RL
methods, in DRL, deep neural networks are used to replace
Q table. As deep neural networks can build the relationship
among high-dimensional states, actions and Q-values, DRL
has powerful learning capacity to be widely adopted to solve
complex problems.

In SDN/NFV-enabled networks, it is difficult for traditional
RL methods to solve the VNF placement problem because
of the following challenges. Firstly, a network could include
plenty of hardware devices, and the change of network
resource state (e.g., bandwidth, memory, CPU, etc) is complex
resulting from varieties of network services and requirements
of users and has influence on the placement of VNFIs.
Moreover, in NFV environment, VNFIs can be flexibly placed
in various network locations, which results in a large size
of action space of the VNF placement and optimization.
Benefitting from deep neural networks, DRL is capable to deal
with such high-dimension network resource states and VNF
placement actions in SDN/NFV-enabled environment. With
the exploration of new knowledge and the exploitation of the
acquired one, DRL can effectively evaluate the performance
of VNF placement actions under network resource states,
and learn to adjust and conduct better actions to optimize
the placement of VNFIs given the feedback rewards from
networks.

In this paper, we study the VNF placement problem in
SDN/NFV-enabled networks. First, we formulate this problem
as a Binary Integer Programming (BIP) model aiming to
minimize a weighted cost including the VNF placement cost,
VNFI running cost and penalty of reject SFCRs. The VNF
placement and VNFI running costs are related to Operating
Expenses (OPEX), Capital Expenses (CAPEX) and energy
consumption in management, monitoring and maintenance
of VNFIs. The penalty of reject SFCRs has a big impact
on network performance and the usage of resources (e.g.,
bandwidth, memory, CPU, etc). So ISPs can enhance their
revenue and network performance by optimizing the above
three costs. Next, a Double Deep Q Network-based VNF
Placement Algorithm (DDQN-VNFPA) is proposed to intel-
ligently and efficiently solve the problem. In order to design
a time-efficiency approach, the latencies from VNF placement
and resource provision for an SFC must be taken into account.
Many papers have shown that initializing a VNFI can need tens
of seconds and it always needs serval minutes to completely
setup an SFC for a user, which could influence the Quality-
of-Service (QoS) in the network and harm the Quality-of-

Experience (QoE) of users [17], [18]. Fortunately, the fore-
casting technique has been widely studied and used to forecast
the change of traffic in SDN/NFV-enabled networks [18]–
[20]. In our paper, we assume that the SFCRs of a future
time interval can be forecasted, then we can avoid the setup
latency of VNFIs and SFCRs by pre-placing VNFIs according
to forecasting results.

Our proposed DDQN-VNFPA consists of offline training
process and online running process. In training process,
we collect training data and train DDQN models offline.
After training process, we run those trained DDQN models to
output the optimization strategies of VNF placement according
to network resource states. The running process conducts in
three phases: i) use DDQN models to preliminarily evaluate
VNF placement actions and optimize the solution space size;
ii) conduct actions of optimized solution space considering
forecasted SFCRs in simulation environment to get rewards,
and record results into dataset to further update DDQN mod-
els; iii) choose the optimal action with the highest reward
to optimize the placement of VNFIs with a threshold-based
policy.

Generally, there are two kinds of schemes to solve the
VNF placement problems [21], [22]. The first kind is hori-
zontal scheme, which can adjust the number of VNFIs placed
in the network, while the available resource per VNFI is
fixed; the second kind is vertical scheme, which can opti-
mize the available resource per VNFI, while do not adjust
the number of VNFIs placed in the network. In this paper,
we consider the horizontal way to solve the VNF placement
problem.

The contributions of this paper are listed as follows:
• We give a detailed analysis of the VNF placement

problem considering dynamic change of network load in
SDN/NFV-enabled networks, and show the advantages by
solving the problem using DRL.

• We formulate the VNF placement problem as a BIP
model aiming to minimize a weighted cost where the
VNF placement cost, VNFI running cost and penalty of
reject SFCRs are all taken into account. Then, a novel
horizontal scheme, DDQN-VNFPA, is proposed to solve
the problem more efficiently.

• We conduct a theoretical analysis on the effectiveness
of DDQN-VNFPA and further construct a Tensorflow-
based environment to evaluate its performance. Simu-
lation results show that, compared with existing algo-
rithms, our DDQN-VNFPA can get high performance in
terms of SFCR reject number and ratio, throughput and
end-to-end delay of SFCRs, save VNFI running time,
improve VNF utilization ratio and better balance network
load.

The rest of the paper is organized as follows: we review
related works and introduce the technical background about
DDQN in Section II. In Section III, we present the sys-
tem model, and formulate the VNF placement problem in
Section IV. Then we propose our DDQN-VNFPA algorithm
and analyze its effectiveness in Section V. The performance
of DDQN-VNFPA is compared with existing algorithms in
Section VI. Finally, Section VII concludes the paper.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 265

II. RELATED WORKS AND TECHNICAL BACKGROUND

A. Related Works

Recently, the design of VNF placement has become a hot
issue in academia, and many solutions have been proposed.
Generally, most of existing literatures formulate it into Integer
Linear Programming (ILP) models [12], [23]–[25], Binary
Integer Programming (BIP) models [9], [13], [26] or Mixed
Integer Linear Programming (MILP) models [19], [27], [28].
However, since the VNF placement problem is NP-hard, it is
difficult to obtain the optimal solutions efficiently, especially in
large scale networks. For example, Li et al. [23], [24] showed
that, in the worst situation, it leaded to about four orders of
magnitude time consumption more than heuristics to solve
their models using existing optimization toolboxes.

Therefore, as for large scale networks, particularly in the
environments of cloud computing [29], [30] and fog comput-
ing [31], [32], many researchers have proposed heuristics to
solve the VNF placement problem for SFCRs. For example,
Li et al. studied the VNF placement problem in cloud data-
center [24] and edge computing enabled networks [23], where
the objective was to minimize used physical machines and the
resource consumptions in nodes and links. Then, considering
basic resource consumptions of VNFs, two polynomial-time
heuristics are proposed to achieve the placement of VNFIs in
large scale networks. In datacenter networks, Bari et al. [12]
solved the VNF orchestration problem with a multi-stage
graph, and Qi et al. [25] improved their algorithm using
accessible scope which could achieve VNF placement effi-
ciently. Considering traffic forecasting and the VNF placement
problem in operator datacenters, first, Tang et al. [19] proposed
a traffic forecasting method based on slip-window linear
regression, then developed two heuristics via relaxing integer
variables. In our previous work [9], we proposed a layered
graph-based algorithm to solve dynamic VNF placement in
geo-distributed cloud system, where the objective was to
achieve load balancing and minimize the placement cost of
VNFIs.

Hawilo et al. [27], Mechtri et al. [33] and Zeng et al. [28]
considered the VNF placement problem in VNF Forward-
ing Graph (VNFFG), respectively. In order to minimize the
communication delay between two dependent VNFs, Haw-
ilo et al. [27] divided VNF types into different sub-groups
based on their inherited dependency from VNFFG. Next, all
the available servers are used to build a weighted graph where
servers are connected with logical communication links. Then,
based on sub-groups and a weighted graph, the betweenness
centrality is computed for vertices to obtain the best VNF
placement solution. Mechtri et al. [33] studied the VNF
placement and chaining problem and proposed a heuristic
named as eigendecomposition which aimed to obtain the
optimal matching of a VNFFG in physical network according
to Umeyama’s eigendecomposition approach. Zeng et al. [28]
considered the VNF placement problem in inter-datacenter
elastic optical networks, and proposed three heuristics to
minimize the total cost consisting of spectrum utilization on
fiber links, resource consumption in datacenter and the cost of
VNF deployment.

Moreover, the problem of VNF placement for SFCs is
considered by Pham et al. [34] for the purpose of energy
and traffic-aware cost minimization. Since the problem was
NP-hard and solution space was very large, they proposed
a novel two-step algorithm based on the combination of
Markov approximation technique and matching approach to
efficiently solve the problem, where the first step was to
find the subset of nodes to place VNFIs and the second
step was to place VNFIs to minimize the total system cost.
Eramo et al. [22], [35] considered the migration of VNFIs for
SFCRs in NFV-enabled networks based on Markov decision
process theory, where the objective was to minimize the energy
consumption and reconfiguration cost of VNFIs. Liu et al. [13]
solved the middlebox placement problem based on simulated
annealing, where the objective in their model was to minimize
the bandwidth consumptions and end-to-end delay among
switches and middleboxes. Xiao et al. [36] studied the SFC
deployment problem, and proposed a DRL approach to deploy
SFCs aiming to jointly optimize the operation cost of NFV
providers and the total throughput of requests.

Most of these mentioned solutions for the VNF placement
problem need to abstract problems with complex math models.
These complex math models can only be solved when the
network scale is small, while heuristics are more preferred in
large scale networks. However, due to lack of strict theoretical
proof, heuristics cannot always guarantee to obtain close-
to-optimal results. Different from these mentioned methods,
in this paper, our proposed DDQN-VNFPA is based on DRL
technique which can effectively use collected network infor-
mation as training data to improve its performance. Moreover,
our proposed DDQN-VNFPA is not sensitive to network scale.
To our best knowledge, this work is the first one to solve the
VNF placement problem using DRL.

B. Technical Background

DRL is competent in sequential decision-making problems
with high-dimensional states and actions [37]. As one of DRL
approaches, Deep Q Network (DQN) has gained superhuman
performance in many video games of Atari 2600 [16]. In DQN,
a deep neural network is used to approximate Q function which
is used to evaluate how good a state-action pair is under a
policy. DQN uses experience reply to achieve efficient model
training. As for experience reply, the sequences consisting of
current state, action, reward and next state are recorded in
memory and picked randomly to update Q function, which
can effectively break the correlation between samples.

Nevertheless, studies show that DQN overestimates
Q-values, then DDQN is proposed to solve the problem.
DDQN includes two neural networks named as online neural
network and target neural network. In DDQN, online neural
network takes charge of sampling and action selection, and
the Q value evaluation is conducted by target neural network.
By decoupling action selection and Q value evaluation, DDQN
can efficiently enhance stability and mitigate overestimation
during model training.

In this paper, we propose DDQN-VNFPA to intelligently
solve the VNF placement problem. As the change of network

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

266 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

resource has influence on the placement of VNFIs, we take
the bandwidth, memory, processor cores and CPU in links,
nodes and VNFIs as network resource states, and actions
represent different VNF placement strategies that can be
conducted to adjust the placement of VNFIs. In SDN/NFV-
enabled networks, network resource states cannot be all enu-
merated, and there exist plenty of VNF placement actions.
Thus, the VNF placement belongs to a high-dimensional
sequential decision-making problem, and it is difficult to use
traditional RL algorithms to solve it. Fortunately, in DDQN,
neural networks are naturally competent in the matching of
high-dimensional states and actions. With the help of DDQN,
we can efficiently evaluate different VNF placement actions
under network resource states, which can be used to optimize
the placement of VNFIs in the network.

III. SYSTEM MODEL

A. Physical Network and VNFIs

Physical network is presented as a graph G = (V , E ,M).
The parameters V and E stand for the sets of nodes and links,
respectively. The parameters u, v ∈ V represent two nodes and
uv ∈ E stands for a physical link connecting node u and v.
The set of VNFIs is denoted as M, and m ∈ M indicates
VNFI m. In the network, V consists of two kinds of nodes.
One is switch node which is in charge of forwarding packets
to neighbour nodes. The other one is function node that can
not only communicate with neighbour nodes, but also place
VNFIs to handle traffic of SFCRs.

In the network, bandwidth, memory, processor cores and
CPU are considered metrics for links, nodes and VNFIs.
We use Cbw

uv to represent the bandwidth capacity of link uv,
and Cmem

u denotes the memory capacity of node u. We use P
to indicate the set of all the VNF types and p ∈ P stands for
VNF type p. Since running VNFIs require processor cores
from the corresponding function node and the number of
available processor cores within each function node is finite,
we use Ccore

u to represent the number of available processor
cores of node u, and ncore

p represents the number of processor
cores that VNF type p demands. Then, Ccpu

m denotes the CPU
capacity that VNFI m can provide to handle the traffic of
SFCRs. We use ωbw

uv , ωmem
u and ωcpu

m to indicate the available
ratios of bandwidth, memory, and CPU of link uv, node u and
VNFI m, respectively. Moreover, we use duv , du and dm to
represent the delay in link uv, node u and VNFI m.

B. Service Function Chain Request

We use service function graph Gf = (Vf , Ef), which is a
digraph and the edges are from the ingress node to egress
node concatenating a series of VNF Requests (VNFRs) in
a predefined order, to represent SFCRf . The parameter Vf

denotes ingress node, egress node and the set of VNFRs of
SFCRf , and uf , vf ∈ Vf represent two nodes in Gf . The
parameter Ef indicates the set of links connecting adjacent
VNFRs of SFCRf , and ufvf ∈ Ef stands for a link connecting
nodes uf and vf in Gf . For example, assuming that SFCRf is
B→ FW→DPI→ I, B and I represent the ingress node and
egress node in the network, and its traffic needs to traverse the

Fig. 1. Optimize VNF placement with dynamic change of network load.

instances of FW and DPI in order. For SFCRf , we use ϕbw
f and

ϕmem
f to represent the bandwidth and memory consumptions

in physical links and nodes, respectively. And we use ϕcpu
f,p to

denote the CPU consumption in VNFIs belonging to VNF type
p. In addition, the parameter ϕdelay

f indicates the maximum
tolerated delay of SFCRf .

IV. PROBLEM STATEMENT

In this section, we give a detailed description to the VNF
placement problem, then formulize it using BIP model.

A. Problem Description

Since network load changes dynamically and periodically,
it is important for ISPs to improve network performance and
reduce resource consumptions and extra cost by optimizing the
placement of VNFIs over time in SDN/NFV-enabled networks.
For example, in Fig. 1, we show the average change of network
load in TOTEM project [38] which conducts a trace-driven
emulation in a transit network. Moreover, we assume that
the SFCRs in a future time interval �t can be forecasted.
Thus, in order to adapt to dynamic change of network load,
we optimize the placement of VNFIs with forecasted SFCRs
per �t time interval.

In SDN/NFV-enabled networks, the number of SFCRs that
fail to be served has a great influence on the QoS/QoE. VNFI
running time denotes the total time that all the placed VNFIs
occupy and it is related to the consumptions of energy and
network resources. Additionally, VNF placement cost results
from the costs of computing power, license fees and the
utilization of network resources [9], [12]. So it is necessary
to take reject SFCRs, VNFI running time and VNF placement
cost into account, when solving the VNF placement problem.
To sum up, in this paper, considering finite network resources
including bandwidth, memory, processor cores and CPU in
links, nodes and VNFIs, our objective is to make the optimal
VNF placement action according to these forecasted SFCRs in
a future time interval �t, so as to minimize a weighted cost
consisting of VNF placement cost, penalty of reject SFCRs
and VNFI running cost.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 267

B. Problem Formulation

In this subsection, we formulate the problem of VNF
placement for SFCRs as a BIP model in detail.

As SFCRs will come and go as they run, in a future time
interval, we use O, L and R to represent the set of new arrival
SFCRs, the set of expired SFCRs and the set of SFCRs that
needs to be redirected because of VNF placement. Then, in a
future time interval, the consumptions of bandwidth, memory
and CPU cannot exceed the available resources in links (∀uv ∈
E), nodes (∀u ∈ V) and VNFIs (∀m ∈ M, ∀p ∈ P) as:�
uf vf∈Ef

�
f∈O∪L∪R

ϕbw
f

�
z

uf vf
uv − ẑ

uf vf
uv

� ≤ ωbw
uv Cbw

uv , (1)

�
uf vf∈Ef

�
f∈O∪L∪R

ϕmem
f

�
z

uf vf
u −ẑ

ufvf
u

� ≤ ωmem
u Cmem

u , (2)

�
uf∈Vf

�
f∈O∪L∪R

ϕcpu
f,p qm

p

�
z

uf
m − ẑ

uf
m

� ≤ ωcpu
m Ccpu

m . (3)

In Eqs. (1)-(2), z
uf vf
uv and z

uf vf
u are binary variables and

indicate whether ufvf ∈ Ef traverses uv ∈ E and u ∈ V ,
respectively. And z

uf vf
uv and z

uf vf
u equal 1, if ufvf ∈ Vf

traverses uv ∈ E and u ∈ V , and 0 otherwise. Similarly,
in Eq. (3), binary variable z

uf
m denotes whether uf ∈ Vf is

served by VNFI m ∈ M. And z
uf
m equals 1, if uf ∈ Vf is

served by VNFI m ∈ M, and 0 otherwise. The parameter
qm
p is also a binary variable and it denotes whether VNFI

m belongs to VNF type p. And qm
p equals 1, if VNFI m

belongs to VNF type p, and 0 otherwise. Here, we use ẑ
uf vf
uv ,

ẑ
uf vf
u and ẑ

uf
m to represent the values of z

uf vf
uv , z

uf vf
u and z

uf
m

in the last time interval. Then, in Eqs. (1)-(3), the first parts
represent the resource consumptions in future time interval,
and the second parts represent the ones in the last time interval.
Thus, the differences indicate the change of available resources
in links, nodes and VNFIs, and Eqs. (1)-(3) guarantee that the
resource consumptions in links, nodes and VNFIs after change
cannot exceed their available resources.

The total number of processor cores applied by the placed
VNFIs in a function node cannot exceed the number of
available processor cores as:�

m∈M
ncore

p ym
u qm

p ≤ Ccore
u , ∀p ∈ P , ∀u ∈ V , (4)

where binary variable ym
u represents whether VNFI m ∈ M

is placed in node u ∈ V . And ym
u equals 1, if VNFI m ∈M

is placed in node u ∈ V , and 0 otherwise.
For each served or new arrival SFCR f ∈ O ∪R, the end-

to-end delay cannot exceed its maximum tolerated delay as:�
uv∈E

�
uf vf∈Ef

duvz
uf vf
uv +

�
u∈V

�
uf vf∈Ef

duz
uf vf
u

+
�

m∈M

�
uf∈Vf

dmz
uf
m ≤ ϕdelay

f . (5)

For SFCRf (f ∈ O∪L∪R), the physical links it traverses
must be connected head-to-tail and cannot be split as:

�
v∈V

�
uf vf∈Ef

�
z

uf vf
uv −z

ufvf
vu

�
=

⎧⎪⎨
⎪⎩

1, u is ingress node,

−1, u is egress node,

0, otherwise.

(6)

If a physical link is traversed, the nodes connected by this
physical link should be traversed as well (f ∈ O ∪ L ∪R):

z
uf vf
u z

uf vf
v =

	
1, z

uf vf
uv = 1, ∀u,v∈V,∀uv∈E,∀ufvf ∈Ef ,

0, otherwise.
(7)

Eq. (8) ensures that all the selected links, nodes and VNFIs
must be traversed by the traffic of SFCRf as:

�
m∈M

�
uf∈Vf

z
uf
m ym

u ≤ z
uf vf
uv ,

∀u ∈ V , ∀ufvf ∈ Ef , ∀f ∈ O ∪R. (8)

For VNFI m, it can only belong to one VNF type as:

�
p∈P

qm
p = 1, ∀m ∈M. (9)

VNFI m can only be placed in one function node as:

�
u∈V

ym
u = 1, ∀m ∈ M. (10)

For a VNFI to place, the VNF placement cost is cplace.
Then we can compute the total VNF placement cost in future
time interval �t as:

D = cplace
�
u∈V

�
m∈M

max {ym
u − ŷm

u , 0} , (11)

where ŷm
u represents the value of ym

u in the last time interval.
In a future time interval �t, the VNFI running time can be

calculated as:

F = �t
�
u∈V

�
m∈M

ym
u . (12)

We suppose that each reject SFCR leads to a penalty
cpenalty . Then the penalty of reject SFCRs in future time
interval �t is calculated as:

U=
�

f∈O∪R
cpenalty

1−I

��
u∈V

z
uf vf
u >0

�
, ∀ufvf ∈ Ef . (13)

Here, I(·) is an indicative function and its condition indi-
cates whether SFCRf is successfully served or not. And I(·)
equals 1, if SFCRf is successfully served, and 0 otherwise.

In this paper, our objective is to minimize the weighted cost
consisting of VNF placement cost, penalty of reject SFCRs
and VNFI running cost in every time interval �t as follows:

Minimize
z

uf vf
uv ,z

uf vf
u ,z

uf
m

η1D + η2F + η3U,

s.t. Eqs. (1)− (10), (14)

where η1, η2 and η3 are weighted parameters to get good trade
off among the three parts.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

268 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

V. VNF PLACEMENT WITH THE HELP OF DDQN

A. Overview

We propose an intelligent method, DDQN-VNFPA, to opti-
mize the placement of VNFIs with dynamic network load.
In this paper, we suppose that network load changes period-
ically with a time cycle T , and SFCRs can be forecasted in
future time interval �t. In the network, since load changes
dynamically and its change tendency may be different over
time. For example, as shown in Fig. 1, network load increases
during 6 am – 12 am; during 12 am – 4 pm, network load
keeps stable, then continuously goes down from 4 pm to 6 am
the next day. Additionally, for different time slots, though their
network load changes with similar tendency (e.g., in Fig. 1,
the network load both increases during 7 am – 9 am and 9 am
– 11 am), there are many differences among them because
of complex network states and resource usage. In order to
improve the performance of DDQN models considering the
change of network load, we separate time cycle T with time
interval �t, and train a DDQN model to specifically take
charge of the optimization of VNFI placement in each time
interval �t.

In the network, devices (e.g., nodes and links) could join in
and leave making the network topology change dynamically,
so it is necessary to design a VNF placement algorithm that
adapts to the change of network topology. In this paper,
the whole network topology is divided into N network regions,
and each node or link is related to a network region. Since net-
work regions do not change when nodes and links dynamically
join in and leave, the proposed DDQN-VNFPA can adapt to
the change of network topology by training DDQN models
according to network regions.

In DDQN-VNFPA, we treat each combination of network
regions as an action. If an action is chosen to be conducted,
it means that we need to optimize the placement of VNFIs
in function nodes of the network regions corresponding to
this selected action. For example, assuming that there are two
network regions A and B, then the actions φ, {A}, {B},
{A, B} represent the corresponding combination of network
regions. If action {A, B} is selected, it means that it is
necessary to optimize the VNF placement in the function
nodes of network regions A and B. Thus, as for N network
regions, there are 2N actions. It is noted that, for briefness,
we use state to indicate the network resource state in this paper.

DDQN-VNFPA includes offline training process and online
running process. In the training process, we collect training
data and train a DDQN model to take charge of the VNF
placement for each time interval �t. After training process,
we can run those trained DDQN models online to achieve the
optimization of VNF placement according to states. Addition-
ally, once it is necessary to update DDQN models, the only
thing we need to do is to make a copy of the old trained
DDQN models and continue to train it using new collected
training data. When the training process of new DDQN models
is completed, we can replace old DDQN models with the new
ones.

In the running process, DDQN-VNFPA optimizes the place-
ment of VNFIs with three phases. In the first phase, a DDQN

model is chosen according to current time to give a preliminary
evaluation of each action under current state and optimize the
solution space size by choosing the top k actions from total
2N actions. In the second phase, we conduct the top k actions
considering forecasted SFCRs in simulation environment to
get rewards, and record results into database to further update
DDQN models. Here, a simulation environment of physical
network is constructed to evaluate the performance of actions.
In simulation environment, all the processes do not influence
physical network. In the third phase, the action with the
highest reward in optimized solution space is conducted to
optimize the placement of VNFIs in physical network based
on a threshold-based policy. It is worthy to note that the SFC-
MAP algorithm in our previous work [9], which achieves load
balancing according to the costs of bandwidth, memory and
CPU, is used to compute routing paths of SFCRs.

Fig. 2 shows the framework of DDQN-VNFPA. In step 1 ,
SDN controller monitors devices to collect and record training
data into database. Step 2 - 4 take charge of the training
process of DDQN models. Step 2 selects a batch of training
data from database, then they are used to train DDQN models
in step 3 . The trained DDQN models are output into SDN
controller in step 4 .

The running process of DDQN-VNFPA includes steps 5 -
9 . In step 5 , the corresponding DDQN model is chosen

according to current time t = �t, . . . , j�t, For example,
assuming that current time is t = 2�t, the DDQN model
θt=2�t is chosen in step 5 . Next, the chosen DDQN model
evaluates all the actions in current state preliminarily, and
get their Q-values in step 6 . As Q-values can reflect the
performance of actions, the actions with top k Q-values are
selected in step 6 to optimize the solution space. For example,
assuming that current state is S3 and k = 3, only the action
4 to 6 that have the top three Q-values are chosen in this step.
Then, based on current state, step 7 conducts chosen actions
considering forecasted SFCRs in simulation environment to
get rewards. The action with the highest reward (e.g., action
5 has the highest reward in step 7) is regarded as the best one.
After that, in step 8 , all the results including current states,
actions, their rewards and the next states after conducting
actions are recorded into database to further update DDQN
models. Finally, in step 9 , DDQN-VNFPA gets the network
regions that the best action is corresponding to, and optimizes
the placement of VNFIs in them according to a threshold-
based policy.

B. Structure of Neural Network in DDQN Model

In DRL, neural network is used to replace Q table in con-
ventional RL algorithm to achieve the mapping among states,
actions and Q-values. DDQN includes two neural networks of
the same structure named as online neural network and target
neural network. Since the resource conditions of network can
influence the computation of the optimal strategy of VNF
placement, we define that the state of DDQN-VNFPA includes
available resource ratios of links, nodes and VNFIs. Noting
that the whole network topology is divided into network
regions, we use Vn ⊂ V , En ⊂ E and Mn ⊂ M to

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 269

Fig. 2. Framework of DDQN-VNFPA.

represent the sets of nodes, links and VNFIs in the nth network
region and N represents the total number of network regions,
n = 1, 2, . . .N . Then, each state is denoted as a vector as:

S=
�
ωbw

1 , ωmem
1 , ωcore

1 , ωcpu
1,p , . . . , ωbw

n , ωmem
n , ωcore

n , ωcpu
n,p ,. . .

�T

. (15)

In Eq. (15), ωbw
n , ωmem

n and ωcore
n represent mean available

ratios of bandwidth, memory and processor cores in network
region n, respectively, and they are calculated as follows:

ωbw
n =

1
|En|

�
uv∈En

ωbw
uv , (16)

ωmem
n =

1
|Vn|

�
u∈Vn

ωmem
u , (17)

ωcore
n = 1−

�
m∈Mn

ncore
p ym

u qm
p

�
u∈Vn

Ccore
u

. (18)

The parameter ωcpu
n,p indicates mean available CPU ratio of

VNF type p in network region n, and it can be computed as
follows:

ωcpu
n,p =

�
m∈Mn

�
u∈Vn

ωcpu
m ym

u qm
p

�
m∈Mn

�
u∈Vn

ym
u qm

p

. (19)

Given the definition above, state S can be formatted and
served as the input of neural network of DDQN. As for the
output of neural network in DDQN model, each dimension
represents an action. The value of a dimension indicates the
Q-value of the corresponding action. In DDQN, after model
training, neural networks can evaluate the performance of each
action under state S. Then, we denote the output of neural
networks as follows:

y = (Q(S, a1) ,. . ., Q(S, ai) , . . .)T , i = 1, 2, . . . , 2N , (20)

where Q(S, ai) stands for the evaluated Q-value by conduct-
ing action ai under state S. Since there are N network regions

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

270 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

and each combination of network regions represents an action,
the total number of actions equals 2N .

C. Generation of Training Data

In DDQN-VNFPA, the reward conducting action ai is
denoted as rai which is used to reflect the influence of action
ai in the network. In this paper, our objective is to minimize
a weighted cost including the VNF placement cost, penalty of
reject SFCRs and VNFI running cost in Eq. (14). Thus, if ai

can get good performance in the reduction of Eq. (14), rai is
associated a high value. On the contrary, rai is set to a small
value, if ai leads to high cost in Eq. (14). Given the explanation
above, we define the calculation of reward as follows:

rai = −η1D− η2F− η3U, i = 1, 2, . . . , 2N . (21)

We generate training data according to the following steps.
If the state at current time t is S, we conduct each action
ai considering the forecasted SFCRs of this time interval
in the simulation environment by placing/releasing VNFIs in
the corresponding network regions, then get its reward rai

according to Eq. (21) and the next state S� which represents
the state after VNF placement. And all the results including
S, ai, rai and S� are recorded as training data. Afterwards,
we conduct the best action with the highest reward in physical
network, then we continue to optimize the VNF placement
in the next time interval. Finally, the following processes are
repeated until we generate enough training data.

D. Training Process

In this paper, we assume that the network load changes with
time cycle T and we can forecast the variation of SFCRs in
future time interval �t. In order to obtain good training and
prediction performance given the change tendency of network
load, we discretize time cycle T with time interval �t, and
train a DDQN model for each time interval�t. So, in DDQN-
VNFPA, there are

�
T
�t

�
DDQN models needed to be trained.

For the training process of a DDQN model, the loss func-
tion, which is used to indicate the estimation performance,
is defined in Eq. (22) as follows:

J(θt) = E

�

rai + γQ

�
S�, argmax

a
Q
�
S�, a|θt

�|θ−t �

−Q
�
S, ai|θt

�2�
. (22)

In DDQN models, we use θt to represent the online
neural network at time t, and θ−t denotes the target
neural network at time t. Here, the first part rai +
γQ
�
S�, argmax

a
Q
�
S�, a|θt

�|θ−t � represents a target that the

Q-value needs to move and the second part Q
�
S, ai|θt

�
represents the estimation of Q-value [37]. In Eq. (22),
Q
�
S�, argmax

a
Q
�
S�, a|θt

�|θ−t � is solved in two steps. The

first step is to find the action a with the highest Q-value
according to online neural network θt under state S�. The sec-
ond step is to evaluate the Q-value of action a under state

S� using the target neural network θ−t . Therefore, the loss
function indicates the estimation error of a DDQN model,
and the smaller the loss function is, the better estimation
performance a DDQN model will have. Given the statement
above, the loss function of DDQN model at time t is symbol-
ized as J(θt), and it equals the expectation of the square of

the summation among rai , γQ
�
S�, argmax

a
Q
�
S�, a|θt

�|θ−t �
and −Q (S, ai|θt), where γ is discount-rate parameter. The
gradient descent algorithm is used to update the weights of
online neural network, which is helpful to optimize the loss
function in Eq. (22), as follows:

θ�t = θt + α

�
rai + γQ

�
S�, argmax

a
Q
�
S�, a|θt

�|θ−t �

−Q(S, ai|θt)

�
∇Q

�
S, ai|θt

�
, (23)

where θ�t and θt indicate online neural network after and
before update and α is the step-size parameter.

The pseudocode of training process is listed in Algorithm 1.
The weights of DDQN models are initialized in line 2.
In line 4, we choose a batch of training data from database, and
get the outputs which represent Q-values of the corresponding
actions under current state in line 5. Then, the loss function is
calculated in line 6, and we decide whether it is convergent in
line 7-12. In line 7-8, if the value change of loss function
is smaller than a threshold �, the model is decided to be
convergent, then we stop the training process and train a
DDQN model at the next time interval in line 14. And if
the model is not convergent, we update online neural network
in line 10 and periodically update target neural network
in line 11.

E. Running Process

After model training, DDQN-VNFPA can solve the VNF
placement problem in SDN/NFV-enabled networks. As the
number, type and resource consumptions of SFCRs change
dynamically in different time intervals, it is difficult to format
forecasted SFCRs as the input of DDQN models. Thus,
the optimal VNF placement for forecasted SFCRs in a time
interval cannot be obtained directly. Fortunately, based on
collected historical network information, we can evaluate the
performance of an action statistically. If an action always gets
good performance in the past, it is also likely to perform well
in the future. On the contrary, if an action often performs badly
in the past, it is unlikely to obtain good performance in the
future.

The running process of DDQN-VNFPA includes three
phases. The first phase chooses the corresponding DDQN
model, then preliminarily evaluates Q-values of actions by
inputting current state into it. We avoid actions with bad
performance and select the ones that are likely to obtain
good performance statistically to optimize solution space size.
In the second phase, we evaluate the performance of each
action in optimized solution space by conducting actions
according to forecasted SFCRs in simulation environment
to get rewards, and record results into database to further

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 271

Algorithm 1 Training Process

1:for t = �t, . . . , j�t, . . . do
2: θt, θ

−
t ← Initialize the weights of online and target

neural networks of the DDQN model at time t;
3: while True do
4: (S, ai, rai , S

′) ← Choose a batch of training data
randomly from database;

5: y ← (Q (S, a1) , . . . , Q (S, ai) , . . .)T
, i =

1, . . . , 2N ;
6: J(θt)← E

��
rai + γQ

�
S�, argmax

a
Q(S�, a|θt)|θ−t

�
−Q(S, ai|θt)

�2�
;

7: if
��J(θ�t)− J(θt)

�� <= � then
8: break;
9: else

10: θt ← Update the weights of online neural
network with Eq. (23);

11: θ−t ← Periodically update the weights of target
neural network with θt;

12: end
13: end
14: Θ(t) ← Record DDQN model θt;
15:end

update DDQN models. In the third phase, the action with the
highest reward is conducted in physical network according to
a threshold-based policy.

In DDQN-VNFPA, the threshold-based policy is related to
available resources and load variation. In papers [9], [39]
and [40], CPU thresholds are used to identify overloaded
VNFIs. In this paper, we also use CPU thresholds to determine
whether it is necessary to optimize the number of placed
VNFIs of a network region. The CPU thresholds σplace

up and
σrelease

up are defined to determine whether it is necessary to
place or release VNFIs, when network load is increasing. CPU
thresholds σplace

down and σrelease
down indicate whether it is necessary

to place or release VNFIs, when network load is decreasing.
Additionally, in network region n, we use ζcpu

p,n to represent
the available CPU of VNF type p ∈ P and it is computed as:

ζcpu
p,n =

�
u∈Vn

�
m∈Mn

ωcpu
m Ccpu

m ym
u qm

p . (24)

When network load increases, if ζcpu
p,n < σplace

up , a new instance
of VNF type p is placed in network region n. And if ζcpu

p,n ≥
σrelease

up , we release the instance with the lowest utilization
of VNF type p in network region n. When network load
decreases, if ζcpu

p,n < σplace
down, we place a new instance of

VNF type p in network region n, and if ζcpu
p,n ≥ σrelease

down ,
the instance with the lowest utilization of VNF type p in
network region n is released. After the placement of VNFIs,
we use SFC-MAP algorithm referring to our previous work [9]
to construct routing paths for SFCRs. Finally, in optimized
solution space, we choose the action with the highest reward
calculated according to Eq. (21) and conduct it in physical
network.

Algorithm 2 Running Process

1:for n = 1, 2, . . . , N do
2: ωbw

n ← 1
|En|

�
uv∈En

ωbw
uv ;

3: ωmem
n ← 1

|Vn|
�

u∈Vn
ωmem

u ;

4: ωcore
n ← 1−

�
m∈Mn

ncore
p ym

u qm
p�

u∈Vn
Ccore

u
;

5: for p ∈ P do

6: ωcpu
n,p =

�
m∈Mn

�
u∈Vn

ωcpu
m ym

u qm
p�

m∈Mn

�
u∈Vn

ym
u qm

p
;

7: end
8:end
9:S ←

�
ωbw

1 , ωmem
1 , ωcore

1 , ωcpu
1,p , . . . , ωbw

n , ωmem
n , ωcore

n , ωcpu
n,p , . . .

�T
;

10:θt ← Select the corresponding DDQN model from Θ(t)
according to time t;

11:y ← Put S into DDQN model θt to get the output;
12:A ← Select the top k actions in y to optimize solution

space size;
13:for ai ∈ A in simulation environment do
14: Optimize the VNF placement of the corresponding

network regions according to action ai and state S;
15: Steer SFCRf , f ∈ O ∪ L ∪R;
16: rai ← −η1D− η2F− η3U;
17: S′ ←Get the next state by conducting ai;
18: Record (S, ai, rai , S

′) into database.
19:end
20:a∗←Get the best action with the highest reward from A;
21:Conduct a∗ in physical network; ⇒ Function 1

The pseudocode of running process of DDQN-VNFPA is
shown in Algorithm 2. Line 1-8 of Algorithm 2 compute
mean available resources in links, nodes and VNFIs, and a
state is formatted in line 9 of Algorithm 2. Line 10-11 of
Algorithm 2 input the state into selected DDQN model and
get the corresponding Q-value of each action. In line 12 of
Algorithm 2, the actions with top k Q-values are chosen to
optimize the size of solution space. We obtain the reward of
each action in optimized solution space and record results into
database in line 13-19 of Algorithm 2. We conduct the best
action a∗ in physical network in line 20-21 of Algorithm 2
and optimize the VNF placement according to the threshold-
based policy in Function 1. For each network region n that are
chosen by a∗, we check available CPU for each type of VNF
in line 3-18 of Function 1. If the network load is decreasing,
we optimize the VNF placement in this network region in
line 5-10 of Function 1, otherwise the VNF placement will
be optimized in line 11-17 of Function 1.

F. Complexity Analysis

As for DDQN-VNFPA, the training process runs offline and
its time complexity is proportional to the number of training
data and training time. Thus, we only pay attention to the
running process.

In DDQN-VNFPA, the time complexity of running process
is related to the structure of neural networks and the size of
optimized solution space. Assuming that there are N network
regions and |P| types of VNFIs, as the input vector includes

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

272 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

Function 1 Threshold-Based Policy

1:for n = 1, 2, . . . , N do
2: if a∗ needs to optimize the VNF placement in network

region n then
3: for p ∈ P do
4: ζcpu

p,n ←
�

u∈Vn

�
m∈Mn

ωcpu
m Ccpu

m ym
u qm

p ;
5: if network load is decreasing then
6: if ζcpu

p,n < σplace
down then

7: Place a new instance of VNF type p;
8: else if ζcpu

p,n ≥ σrelease
down then

9: Release the instance with the lowest
utilization of VNF type p;

10: end;
11: else
12: if ζcpu

p,n < σplace
up then

13: Place a new instance of VNF type p;
14: else if ζcpu

p,n ≥ σrelease
up then

15: Release the instance with the lowest
utilization of VNF type p;

16: end;
17: end
18: end
19: end
20:end

the mean available ratios of bandwidth, memory, processor
cores and CPU of all the VNF types, the number of neurons
in the input layer of each neural network is (3 + |P|)N . The
output of a neural network represents Q-values of actions,
and there are 2N neurons in the output layer of each neural
network. In addition, we set that the number of hidden layer of
each neural network of a DDQN model is H and the number of
neurons in each hidden layer is I . Then, for state S, the time
complexity to evaluate the performance of each action with
forward propagation is O

�
I
�|P|N + IH + 2N

��
.

After the preliminary evaluation of actions, the DDQN-
VNFPA will further evaluate each of the top k actions
according to forecasted SFCRs to get rewards. According to
paper [9], in the worst situation, computing the routing paths
for SFCRf runs in O (|M|+ Γ |Vf | (|E|+ |V| log |Vf | |V|)),
where Γ represents iteration times during routing path
computation. In DDQN-VNFPA, since all the new
arrival SFCRs and re-directed SFCRs need to recompute
routing paths, then the total time complexity to obtain
the rewards of k actions runs in O(k (|O|+ |L|)
[|M|+ Γ |Vf | (|E|+ |V| log |Vf | |V|)]). Additionally, in the
worst situation, the time complexity of conducting the
best action in physical network is O (|P|N). Thus,
the total time complexity of the running process of DDQN-
VNFPA is O(I

�|P|N + IH + 2N
�

+ k (|O|+ |L|) [|M| +
Γ |Vf | (|E|+ |V| log |Vf | |V|)]).

VI. PERFORMANCE EVALUATION

This section demonstrates the performance evaluation
of DDQN-VNFPA. We construct a Tensorflow-based

environment to evaluate DDQN-VNFPA using Tensorflow-
gpu 1.13.1 version [41]. All the simulations are conducted
in a computer with an Intel(R) Core(TM) i5-6500 CPU 3.20
@ GHz and a Nvidia GeForce GTX 1080Ti GPU.

A. Simulation Setup

1) Workload of SFCRs: In the simulation, we use the data
of Google cluster-usage traces [42] to simulate SFCRs in the
network. In Google cluster-usage traces, works are recorded
with the format of jobs. A job is comprised of one or more
tasks, each of which is accompanied by a set of resource con-
sumptions used for scheduling (packing) tasks onto machines.
Since each SFCR consists of one or more VNFRs, the format
of an SFCR is similar to the format of a job. Thus, we can
regard a job in Google cluster-usage traces as an SFCR, and
take tasks as VNFRs. In the simulation, the value of ϕcpu

f,p

of SFCRf equals the corresponding CPU consumption of a
task. And we select one of tasks randomly to set the memory
consumption ϕmem

f . Since there is no bandwidth consumptions
between tasks, for SFCRf , ϕbw

f is set to equal a weighted
average of memory and CPU consumptions [24].

Additionally, we set that the arrival rate of SFCRs refers
to TOTEM project [38]. Through a trace-driven emulation,
TOTEM project records traffic matrixes of a transit network
per 15 min for a period of about 4 months, and its average
network throughput over time is shown in Fig. 1.

2) Network Topology and Simulation Settings: The network
topology we use in the simulation comes from TOTEM
project, and it consists of 23 nodes and 37 links. We divided
the whole network topology into 8 network regions each of
which has a function node. Therefore, there are 8 function
nodes to place VNFIs and the rest 15 nodes are switch nodes.
There are 4 types of VNFIs that can be placed in the network.
And we set that each function node can place 20 VNFIs
at most. In Google cluster-usage traces, the resource con-
sumptions of SFCRs are normalized. Thus, in the simulation,
the capacities of bandwidth and memory of each physical
link and node are set to 1 Gbps and 1 GB, respectively.
The CPU capacity of each VNFI is set to 0.05 MIPS (the
total CPU capacity of 20 VNFIs in a function node equals
1 MIPS). We set the weighted factors η1, η2 and η3 in
Eq. (14) to 1, 0.01 and 10, respectively. In the threshold-
based policy, the CPU thresholds for VNF placement are
σplace

up = 0.05 MIPS, σrelease
up = 0.15 MIPS, σplace

down = 0.01
MIPS, σrelease

down = 0.07 MIPS which are set according to the
CPU load of VNFIs in simulations referring to papers [39],
[40]. Furthermore, in training process, if the value change of
loss function is smaller than 10−5, a DDQN model is regarded
to be convergent.

In the simulation, each SFCR consists of three VNFRs, and
the lifetime of each SFCR satisfies the exponential distribution
with an average of 250 min. The maximum tolerated delay
is set between [50, 100) ms [43], [44]. In addition, we run
DDQN-VNFPA with a time interval �t = 15 min [19], [38],
and each experiment is repeated 20 times.

The queuing delay, propagation delay, processing delay and
transmission delay are all considered in the simulation. We use

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 273

M/M/1 queuing model as our hypothesis to capture the change
of delay with network load. The delays of nodes, links and
VNFIs in Eq. (5) are computed as follows [9], [45]:

duv = dprop
uv + dtx

uv +
1− ωbw

uv

ωbw
uv

dtx
uv, ∀uv ∈ E , (25)

du =
1− ωmem

u

ωmem
u

tproc
u , ∀u ∈ V , (26)

dm =
1− ωcpu

m

ωcpu
m

tproc
m , ∀m ∈ M. (27)

In Eq. (25), we use dprop
uv to indicate the propagation delay

which is computed by the ratio of the length of link uv
to the propagation speed of signals in that medium. The
transmission delay dtx

uv is computed in the second part and
it equals the result by dividing the bandwidth capacity of link
uv by the packet size. The third part denotes the queuing
delay, and it is related to the load and transmission delay. The
processing delays in node u and VNFI m are computed in
Eqs. (26)-(27). The parameters tproc

u and tproc
m indicate the

per-packet processing delay of node u and VNFI m, and we
set them to 10 μs and 1 ms, respectively [46]. According to
M/M/1 queuing model, for low load, the queuing delay and
processing delay grow nearly linear, and they are associated
high costs near their capacity, which is desirable to balance
load and avoid to utilize systems at their maximum capacity.

3) Introduction of Compared Algorithms: We compare
DDQN-VNFPA with MSGAS [25] and Eigendecomposi-
tion [33]. Before presenting the evaluation results, we give
a brief description to these compared algorithms.
• MSGAS: achieves efficient VNF placement with acces-

sible scope. First, for an SFCR, MSGAS chooses all the
VNFIs according to the accessible scope which is used
to optimize solution space size. Next, for all the chosen
VNFIs, MSGAS arranges and chains them to satisfy the
predefined order of this SFCR. Then, MSGAS computes
link costs between VNFIs, where VNF deployment cost,
energy cost, cost of forwarding traffic, penalty of SLO
violation and resource fragmentation are all considered.
Finally, the Multi-Stage Graph algorithm [12] is con-
ducted to find the best VNF placement and chaining
result.

• Eigendecomposition: uses Umeyama’s eigendecomposi-
tion approach to achieve the optimal matching of a
VNFFG in network topology. First, Eigendecomposi-
tion computes an adjacent matrix for network topology
where the weight of each element is calculated using
the widest-shortest path algorithm. Next, based on the
demand of resource consumption, Eigendecomposition
also computes an adjacent matrix for each SFCR. Then,
the adjacent matrix of SFCR is extended to be with the
same size of the network’s. After that, Eigendecompo-
sition computes the eigenvector matrixes of these two
adjacent matrixes, then computes the conjugate matrixes
and multiplies them together. Finally, Eigendecomposi-
tion chooses the locations with the maximum value in
each row of the product to place VNFIs and construct
the routing paths of SFCRs.

Fig. 3. Iteration times and time consumptions in training process (with 95%
confidence intervals).

B. Simulation Results

1) Convergence of DDQN Models in Training Process:
Fig. 3 shows the iteration times and time consumptions of
DDQN models in training process. As stated, the time cycle of
the trace-driven emulation of TOTEM project is 24 h and the
time interval �t is set to 15 min [19], so there are 96 DDQN
models trained in our simulation. And, we train each DDQN
model using about 5× 104 samples. Here, the iteration times
mean how many times we sample training data from database
to train a DDQN model, and the time consumptions denote
the corresponding training time. In the simulation, all these
DDQN models can converge, which means that DDQN models
have found the hidden rules behind the training data to
evaluate actions under current states. In these DDQN models,
the minimum and maximum iteration times a DDQN model
trained to be convergent are about 170 and 8,200, and the
time consumptions are about 1.7 s and 82 s, respectively. The
mean iteration times and the time consumption a DDQN model
trained to be convergent in the simulation are about 2,100 and
21 s, respectively. Since the training time per DDQN model
is short enough to be neglected, DDQN-VNFPA can achieve
efficient model training and update.

2) Influence of Optimized Solution Space Size: This sim-
ulation shows the influence of the optimized solution space
size in Fig.4. In DDQN-VNFPA, DDQN models are trained
to preliminarily evaluate the performance of each action under
current state, and the actions with top k Q-values are chosen to
construct a optimized solution space. Then, we compute the
best action according to forecasted SFCRs in the optimized
solution space. In the figure, when k equals 5, the possibility
to include the best action in the optimized solution space is
about 87.5%, and the gap between the best reward and the
reward of the action got from DDQN models is about 0.13.
When k increases to 25, the possibility to include the best
action in the optimized solution space becomes about 92.5%,
and the gap to the best reward is reduced to about 0.1. This is
because, when we increase optimized solution space size, there
are more possibility to include the best action. Nevertheless,
large optimized solution space size leads to more computation.
So there exists a trade off between the optimized solution
space size and computation complexity. As the performance
improvement between k = 15 and k = 25 is little, all the next
simulations are conducted with k = 15.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

274 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

Fig. 4. Influence of optimized solution space size (with 95% confidence
intervals).

Fig. 5. Time consumptions of running process (with 95% confidence
intervals).

3) Comparison in Time Consumptions of Running Process:
We compare the time consumptions of three algorithms
in Fig. 5. Time consumption shows how long an algorithm
optimizes the placement of VNFIs considering new arrival
SFCRs. In the simulation, we assume that there are 50 new
arrival SFCRs in a future time interval �t. In Fig. 5, DDQN-
VNFPA performs the best and its time consumption is only
about 0.22 s. The time consumption of MSGAS is the longest
which is about 45 s, and Eigendecomposition takes about
4.5 s to optimize the placement of VNFIs. In DDQN-VNFPA,
the main time computation is to compute the best action which
is about 0.21 s, and the solution space optimization only
takes about 0.01 s. Compared with the future time interval
�t (�t = 15 min in the simulation), the time consumption
of our proposed DDQN-VNFPA is small enough to achieve
online VNF placement in SDN/NFV-enabled networks.

4) Comparison in SFCR Reject Number and Reject Ratio,
Network Throughput and End-to-end Delay of SFCRs: The
comparison of SFCR reject number and reject ratio among
these three algorithms are shown in Fig. 6. In this simulation,
our proposed DDQN-VNFPA gets the highest performance,
and the performance of MSGAS does better than Eigendecom-
position. In DDQN-VNFPA, the penalty of reject SFCRs are
considered as the reward when training DDQN models, so the
number of reject SFCRs per time cycle T is only about 6 which
only accounts for about 0.25% of all the SFCRs. For MSGAS,
the number of reject SFCRs per time cycle is about 70 and the
SFCR reject ratio is about 2.8%. Eigendecomposition performs
the worst in the simulation. The reason is that Eigendecompo-
sition cannot guarantee to get the optimal matching of SFCRs

Fig. 6. Comparison in SFCR reject number and reject ratio (with 95%
confidence intervals).

Fig. 7. Comparison in network throughput.

in the network topology. Moreover, Eigendecomposition also
neglects to minimize the number of reject SFCRs, and the
widest-shortest path algorithm prefers to produce long routing
paths for SFCRs, which leads to more resource consumptions.
Thus, for Eigendecomposition, there are about 1,000 SFCRs
cannot be served per time cycle, which accounts for about
40% of all the SFCRs.

Fig. 7 presents the network throughput during a time
cycle. According to Fig. 6, since DDQN-VNFPA can effi-
ciently reduce the number of reject SFCRs, it gets the
best performance in network throughput as well. Compared
with MSGAS, DDQN-VNFPA gets about 4% performance
improvement in this simulation. Since the number of reject
SFCRs of Eigendecomposition is much larger than that of
DDQN and MSGAS, its network throughput is only about
half of the other algorithms.

The path delay of the three algorithms are described
in Fig. 8. Since the widest-shortest routing algorithm is
used in Eigendecomposition, which prefers to generate long
routing paths for traffic of SFCRs, the end-to-end delay
of Eigendecomposition is much longer than that of the
other algorithms. Compared with DDQN-VNFPA, in MSGAS,
the end-to-end delay is considered in its objective, while
DDQN-VNFPA does not consider to optimize the end-to-
end delay of SFCRs. Therefore, MSGAS can generate more
routing paths with shorter end-to-end delay for SFCRs. For
example, in the figure, the number of paths with end-to-end
delay shorter than 20 ms accounts for about 50%, while it is
only about 40% in DDQN-VNFPA.

5) Comparison in the Number, Running Time and Utiliza-
tion Ratio of VNFIs: We illustrate the number of VNFIs

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 275

Fig. 8. Comparison in CDF of end-to-end delay.

Fig. 9. Comparison in the number of VNFIs.

placed in the network over time in Fig. 9. In the simulation,
as DDQN-VNFPA considers the change of network load
and can dynamically place/release VNFIs in the network,
the VNF placement can adapt to dynamic network load
better than that of the other two algorithms. For example,
according to the trace-driven emulation of TOTEM project
in Fig. 1, the network load decreases between 4 pm – 6 am
the next day and increases between 6 am – 12 am. When
network load decreases, DDQN-VNFPA can release redundant
placed VNFIs to reduce VNF running time. When network
load increases, it places more VNFIs to guarantee that there
are enough resources to provide for users. However, com-
pared with DDQN-VNFPA, MSGAS and Eigendecomposition
neglect to release VNFIs when network load decreases, so the
number of placed VNFIs of these two algorithms cannot
dynamically adapt to the change of network load. Additionally,
though the number of VNFIs with Eigendecomposition is
the smallest in the simulation, it leads to the worst network
performance according to Fig. 6-8.

Fig. 10 shows the total VNFI running time per time cycle of
these three algorithms. In the figure, we can find that, DDQN
can reduce about 9% VNFI running time than MSGAS in a
time cycle. As for Eigendecomposition, the number of placed
VNFIs is the smallest according to Fig. 9, so it gets the lowest
VNFI running time in this simulation.

In Fig. 11, the utilization ratio of VNFIs is compared
among three algorithms. Since DDQN-VNFPA takes the VNF
placement cost and running time of VNFIs into consideration,
DDQN-VNFPA performs the best in this simulation. However,
compared with DDQN-VNFPA, MSGAS and Eigendecompo-
sition do not consider to improve the utilization ratio of VNFIs

Fig. 10. Comparison in running time of VNFIs.

Fig. 11. Comparison in utilization ratio of VNFIs.

by releasing redundant VNFIs, thus in Fig. 11, when network
load decreases between 4 pm – 6 am the next day, the utiliza-
tion ratios of VNFIs with MSGAS and Eigendecomposition
are about 8% and 25% lower than that of DDQN-VNFPA,
respectively. And when network load increases between
6 am – 12 am, the utilization ratios of VNFI with MSGAS
and Eigendecomposition are about 5% and 20% lower than
that of DDQN-VNFPA, respectively.

6) Comparison in Resource Consumptions and Load Bal-
ancing: Fig. 12 shows the CDF of available bandwidth ratios
of three algorithms. As the bandwidth cost is well considered
using the SFC-MAP algorithm proposed in our previous
work, when network throughput is 3.5 Gbps, there is no
bottleneck link with available bandwidth ratio smaller than
10% in DDQN-VNFPA, while the bottleneck links account
for about 2.3% in MSGAS. And the number of bottleneck
links in DDQN-VNFPA is also smaller than MSGAS’s, when
network throughput is 4.2 Gbps. Additionally, as for available
bandwidth ratio between 40% and 80%, the curve slope of
DDQN-VNFPA is huger than that of MSGAS, meaning that
DDQN-VNFPA is more bandwidth-efficient and does well in
load balancing. As for Eigendecomposition, though the load in
links is balancing, the bandwidth consumption is the highest
leading to very low network performance compared with the
other algorithms.

Fig. 13 presents the CDF of available memory ratios of
three algorithms. When network throughput is 3.5 Gbps,
the bottleneck nodes with available memory ratio less than
10% accounts for about 5.3% in MSGAS, while there is
almost no nodes becoming bottleneck in DDQN-VNFPA. And

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

276 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

Fig. 12. Comparison in CDF of available bandwidth.

Fig. 13. Comparison in CDF of available memory.

Fig. 14. Comparison in CDF of available CPU.

the number of bottleneck nodes of MSGAS is about sixfold
than DDQN-VNFPA’s, when network throughput is 4.2 Gbps.
Moreover, the curve of DDQN-VNFPA is lower than that of
MSGAS, meaning that DDQN-VNFPA is more efficient in
memory consumption than MSGAS. As for Eigendecompo-
sition, its curve is the highest, which indicates that it leads
to the highest memory consumption in nodes than the other
algorithms.

The CDF of available ratio of CPU in VNFIs is described
in Fig. 14. When network throughput is 2.5 Gbps, the number
of bottleneck VNFIs with available CPU ratio less than 10% in
Eigendecomposition is about 13%. When the network through-
put is 3.5 Gbps, the number of bottleneck VNFIs in DDQN-
VNFPA is about 3%, which is about 10% in MSGAS. And
when network throughput comes to 4.2 Gbps, there is about
9% of VNFIs becoming bottlenecks in DDQN-VNFPA, while

the number is about 22% in MSGAS. Additionally, as for
DDQN-VNFPA, when network throughput is 4.2 Gbps, there
are about half of VNFIs with available CPU utilization ratio
between 20% and 40%, however, there are only about 37%
VNFIs for MSGAS. Thus, according to Fig. 12-14, DDQN-
VNFPA gets the best performance in resource efficiency and
load balancing compared with the other two algorithms.

VII. CONCLUSION

This paper studies the VNF placement problem consider-
ing dynamic network load in SDN/NFV-enabled networks.
In order to solve the problem, we first formulate it as a
BIP model aiming to minimize the total cost consisting of
VNF placement cost, VNFI running cost and penalty of reject
SFCRs. Next, a novel horizontal scheme, DDQN-VNFPA,
is proposed to solve this problem in an intelligent manner.
DDQN-VNFPA includes offline training and online running
processes. In the training process, we collect training data and
train DDQN models. Then, we conduct the running process
of DDQN-VNFPA in three phases. The first phase uses these
trained DDQN models to preliminarily evaluate actions with
Q-values and achieve solution space optimization. The second
phase is to further evaluate actions of optimized solution space
by calculating their rewards considering forecasted SFCRs in
simulation environment, and record results to further update
DDQN models. In the third phase, we compute the best action
with the highest reward in the optimized solution space, then
optimize the VNF placement in the corresponding network
regions according to a threshold-based policy. We have given
a detailed analysis of DDQN-VNFPA, then constructed a
Tensorflow-based environment and conducted a trace-driven
simulation to evaluate its performance. Evaluation results show
that DDQN-VNFPA can get high performance in terms of
reject number and reject ratio of SFCRs, throughput and
end-to-end delay, save VNFI running time, improve VNF
utilization ratio and achieve better load balancing compared
with the algorithms in existing literatures.

As a future work, we plan to extend our work in a
number of ways. We plan to construct a SDN/NFV-enabled
networks, and run our DDQN-VNFPA to achieve the VNF
placement in it. We plan to test DDQN-VNFPA with different
network topologies and network characteristics to get more
comprehensive performance evaluation results. We also plan
to implement traffic forecasting methods in SDN/NFV-enabled
networks and further evaluate the influence of the forecasting
accuracy on DDQN-VNFPA.

REFERENCES

[1] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A com-
prehensive survey,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[2] D. Li, P. Hong, K. Xue, and J. Pei, “Availability aware VNF deployment
in datacenter through shared redundancy and multi-tenancy,” IEEE
Trans. Netw. Service Manag., vol. 16, no. 4, pp. 1651–1664, Dec. 2019.

[3] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[4] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: OPTIMAL VNF PLACEMENT VIA DRL IN SDN/NFV-ENABLED NETWORKS 277

[5] M. Karakus and A. Durresi, “A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),” Comput. Netw.,
vol. 112, pp. 279–293, Jan. 2017.

[6] J. Qin, Y. Wu, Y. Chen, K. Xue, and D. S. Wei, “Online user distribution-
aware virtual machine re-deployment and live migration in SDN-based
data centers,” IEEE Access, vol. 7, pp. 11152–11164, 2019.

[7] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. Netw. Comput. Appl., vol. 75, pp. 138–155,
Nov. 2016.

[8] P. Quinn and T. Nadeau, Problem Statement for Service Func-
tion Chaining, document RFC 7498, Informational RFC, 2015.
Accessed: Sep. 20, 2019. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc7498.txt

[9] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2179–2192, Oct. 2018.

[10] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” in Proc. IEEE
Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1–9.

[11] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Proc. IEEE
Int. Conf. Cloud Netw., Oct. 2015, pp. 255–260.

[12] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
O. C. M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Trans. Netw. Service Manag., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[13] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, “Improve service chaining
performance with optimized middlebox placement,” IEEE Trans. Serv.
Comput., vol. 10, no. 4, pp. 560–573, Jul. 2017.

[14] T. Kuo, B. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in Proc. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[15] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[16] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[17] W. Cerroni and F. Callegati, “Live migration of virtual network functions
in cloud-based edge networks,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 2963–2968.

[18] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network
orchestration for on-demand and cost-effective VNF service chaining in
inter-DC elastic optical networks,” IEEE/OSA J. Opt. Commun. Netw.,
vol. 10, no. 10, pp. D29–D41, Oct. 2018.

[19] H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance
scaling based on traffic forecasting and VNF placement in operator data
centers,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 3, pp. 530–543,
Mar. 2019.

[20] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource require-
ments,” IEEE Trans. Netw. Service Manag., vol. 14, no. 1, pp. 106–120,
Mar. 2017.

[21] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 2, pp. 1409–1434, 2nd Quart., 2019.

[22] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2008–2025, Aug. 2017.

[23] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function place-
ment and resource optimization in NFV and edge computing enabled
networks,” Comput. Netw., vol. 152, pp. 12–24, Apr. 2019.

[24] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement
considering resource optimization and SFC requests in cloud datacenter,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677,
Jul. 2018.

[25] D. Qi, S. Shen, and G. Wang, “Towards an efficient VNF place-
ment in network function virtualization,” Comput. Commun., vol. 138,
pp. 81–89, Apr. 2019.

[26] Y. Liu, J. Pei, P. Hong, and D. Li, “Cost-efficient virtual network function
placement and traffic steering,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1–6.

[27] H. Hawilo, M. Jammal, and A. Shami, “Network function
virtualization-aware orchestrator for service function chaining placement
in the cloud,” IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 643–655,
Mar. 2019.

[28] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,” J. Lightw. Technol., vol. 34,
no. 14, pp. 3330–3341, Jul. 15, 2016.

[29] K. Xue et al., “RAAC: Robust and auditable access control with multiple
attribute authorities for public cloud storage,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 4, pp. 953–967, Apr. 2017.

[30] W. Li, K. Xue, Y. Xue, and J. Hong, “TMACS: A robust and verifiable
threshold multi-authority access control system in public cloud storage,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1484–1496,
May 2016.

[31] K. Xue, J. Hong, Y. Ma, D. S. Wei, P. Hong, and N. Yu, “Fog-aided
verifiable privacy preserving access control for latency-sensitive data
sharing in vehicular cloud computing,” IEEE Netw., vol. 32, no. 3,
pp. 7–13, May/Jun. 2018.

[32] J. Hong, K. Xue, N. Gai, D. Wei, and P. Hong, “Service outsourcing
in F2C architecture with attribute-based anonymous access control and
bounded service number,” IEEE Trans. Dependable Secure Comput., to
be published.

[33] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for
the placement of service function chains,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 533–546, Sep. 2016.

[34] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware
and energy-efficient vNF placement for service chaining: Joint sampling
and matching approach,” IEEE Trans. Services Comput., to be published,
doi: 10.1109/TSC.2017.2671867.

[35] V. Eramo, M. Ammar, and F. G. Lavacca, “Migration energy aware
reconfigurations of virtual network function instances in NFV architec-
tures,” IEEE Access, vol. 5, pp. 4927–4938, 2017.

[36] Y. Xiao et al., “NFVdeep: Adaptive online service function chain
deployment with deep reinforcement learning,” in Proc. ACM Int. Symp.
Qual. Service, 2019, Art. no. 21, doi: 10.1145/3326285.3329056.

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[38] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” ACM SIG-
COMM Comput. Commun. Rev., vol. 36, no. 1, pp. 83–86, 2006.

[39] P. Naik, D. K. Shaw, and M. Vutukuru, “NFVPerf: Online performance
monitoring and bottleneck detection for NFV,” in Proc. IEEE Conf. Netw.
Function Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2016,
pp. 154–160.

[40] F.-H. Tseng, M.-S. Tsai, C.-W. Tseng, Y.-T. Yang, C.-C. Liu, and
L.-D. Chou, “A lightweight autoscaling mechanism for fog computing
in industrial applications,” IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4529–4537, Oct. 2018.

[41] TensorFlow. Accessed: Sep. 20, 2019. [Online]. Available: https://www.
tensorflow.org/

[42] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: Format + schema,” Google Inc., Mountain View, CA, USA,
Tech. Rep., Nov. 2011. Accessed: Mar. 20, 2012. [Online]. Available:
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

[43] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in Proc. ACM Int. Workshop Netw. Oper. Syst.
Support Digit. Audio Video, 2002, pp. 23–29.

[44] J. Zhou, P. Hong, and J. Pei, “Multi-task deep learning based dynamic
service function chains routing in SDN/NFV-enabled networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[45] J. Pei, P. Hong, K. Xue, and D. Li, “Resource aware routing for
service function chains in SDN and NFV-enabled network,” IEEE Trans.
Services Comput., to be published, doi: 10.1109/TSC.2018.2849712.

[46] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network
processing delay,” in Proc. IEEE Global Telecommun. Conf. (Globecom),
vol. 3, Nov./Dec. 2004, pp. 1629–1634.

Jianing Pei was born in 1992. He received the
B.S. degree from the Department of Information and
Electrical Engineering, China University of Mining
and Technology, in 2015. He is currently pursuing
the Ph.D. degree with the Department of Electronic
Engineering and Information Science, University of
Science and Technology of China, with his advisor
P. Hong. His research interests include software-
defined networks, network function virtualization,
network resource orchestration and management,
and machine learning algorithms.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSC.2017.2671867
http://dx.doi.org/10.1145/3326285.3329056
http://dx.doi.org/10.1109/TSC.2018.2849712

278 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

Peilin Hong was born in 1961. She received the
B.S. and M.S. degrees from the Department of Elec-
tronic Engineering and Information Science (EEIS),
University of Science and Technology of China
(USTC), in 1983 and 1986, respectively. She is
currently a Professor and also an Advisor for Ph.D.
candidates with the Department of EEIS, USTC. Her
research interests include next-generation Internet,
policy control, IP QoS, and information security.
She has published two books and over 100 aca-
demic papers in several journals and conference
proceedings.

Miao Pan (S’07–M’12–SM’18) received the B.Sc.
degree in electrical engineering from the Dalian Uni-
versity of Technology, China, in 2004, the M.A.Sc.
degree in electrical and computer engineering from
the Beijing University of Posts and Telecommu-
nications, China, in 2007, and the Ph.D. degree
in electrical and computer engineering from the
University of Florida in 2012, respectively. He is cur-
rently an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Houston. His research interests include cyberse-

curity, deep learning privacy, big data privacy, cyber-physical systems, and
cognitive radio networks. He is a member of the ACM. He was a recipient of
the NSF CAREER Award in 2014. His work won the IEEE TCGCC (Technical
Committee on Green Communications and Computing) Best Conference Paper
Awards 2019, and the Best Paper Awards in ICC 2019, VTC 2018, Globecom
2017, and Globecom 2015, respectively. He has also been serving as a
Technical Organizing Committee for several conferences such as the TPC
Co-Chair for Mobiquitous 2019, ACM WUWNet 2019. He is an Associate
Editor for the IEEE INTERNET OF THINGS (IoT) Journal from 2015 to 2018.

Jiangqing Liu received the B.Eng. degree from
University of Electronic Science and Technology of
China in 2013, and the Ph.D. degree from the Uni-
versity of Florida in 2018. He is currently a tenure-
track Assistant Professor with the Department of
Electrical and Computer Engineering, The Univer-
sity of Alabama in Huntsville. His research interest
is to apply cryptography, differential privacy and
convex optimization to design secure and efficient
protocols for various IoT systems. He is a recipient
of the 2018 Best Journal Paper Award from the IEEE

Technical Committee on Green Communications & Computing (TCGCC) and
the Best Paper Award from the 2012 IEEE Workshop on Microwave and
Millimeter-Wave Circuits and Systems (MMWCST).

Jingsong Zhou was born in 1995. He received
the B.S. degree from the Department of Electronic
Engineering and Information Science (EEIS), Uni-
versity of Science and Technology of China (USTC),
in 2018, where he is currently pursuing the mas-
ter’s degree with his advisor P. Hong. His research
interests are involving SDN, NFV, and quality of
service, particularly with applications of machine
intelligence and deep learning.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on March 17,2023 at 09:05:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

